To cope with the extreme power density limits for high performance systems and high-power devices, conventional microchannel cooling solution needs to go to much smaller channel hydraulic diameter to achieve higher heat transfer coefficient. However, the pressure drop will increase dramatically as the channel dimension becomes smaller and smaller. Moreover, there will be temperature gradient along the channels since the liquid will be heated up as it flows along the channels. The temperature nonuniformity will result in thermomechanical stress reliability issues. Those are not efficient for the electronics cooling. In order to address those challenges, high-efficiency direct liquid jet impingement cooling solution utilizes microscale 3D hierarchical fluid delivery systems with alternating N x N inlet/outlet nozzles jets array, enabling the spent fluid to be efficiently extracted through the outlet nozzles that are distributed in between the inlet nozzles. This local outlet flow extraction approach requires low pressure drop due to the short liquid flow transfer length from the inlet and outlet. The repeated inlet/outlet nozzles array can also achieve much better flow and temperature uniformity. Alternatively, embedded microchannel cooling with top accessed 3D manifolding structures (EMMC) can also address the challenges. The 3D manifold structures can provide multiple inlets and outlets along the embedded microchannels, that can short the fluid flow path and further reduce the pressure drop. We will explore the surface enhancement method and two-phase cooling for the different microfluidic cooling solutions.
Publications
Wei, T., Design Considerations for Chip/Package Level BareDie Impingement Cooling for High PerformanceComputation Systems, Electronics Cooling, 2024. [PDF]
Patel, A., Yogi, K., Sahu G., Wei, T., A Novel Multi-chip Jet Impingement Cooler for Direct-on-chip Cooling of High Performance Interposer Package, 3DIC 2024. [PDF]
Wei, T.W., Lin Zhang, Mehdi Asheghi, Kenneth E. Goodson, Embedded Microchannel Cryogenic Cooling for Silicon Crystal Monochromators using Liquid Nitrogen and Liquid Argon, Itherm 2024. [PDF]
Feifan Xie, Shuhang Lyu, Zhi Yang, Wei, T.W., Direct-On-Chip Hotspot Targeted Microjet Cooling for Ultra-fast Inference at Scale Running on Groq Language Processing Unit (LPU™), Itherm 2024. [PDF]
Feifan Xie, Shuhang Lyu, Wei, T.W., Thermal Analysis of Dual-sided Cooling for Backside Power Delivery Networks (BSPDN) on 2.5D Glass/Silicon Interposer Package, Itherm 2024. [PDF]
Xie, F.F., Chen R.M., and Wei, T.W.*, Thermal Mitigation Strategy for Backside Power Delivery Network, 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, Colorado, May 28- May 31, 2024, pp. 1485-1492. DOI: 10.1109/ECTC51529.2024.00241 [PDF]
Lyu, Shuhang, Qianying Wu, and Tiwei Wei. "Hotspot-targeted Cooling Scheme with Hybrid Jet Impingement/Thermal Through Silicon Via (TSV)." 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2023. DOI:10.1109/ITherm55368.2023.10177590[PDF]
Lin, Yujui*, Tiwei Wei*, Wyatt Jason Moy, Hao Chen, Man Prakash Gupta, Michael Degner, Mehdi Asheghi, Alan Mantooth, and Kenneth Goodson. "Multi-level Embedded 3d Manifold Microchannel Heat Sink of Aln Direct Bonded Copper for the High-power Electronic Module." Journal of Electronic Packaging (2023): 1-45.
H Oprins, Tiwei Wei, Vladimir Cherman, E Beyne (2023, May). Liquid jet impingement cooling of high-performance interposer packages: a hybrid CFD–FEM modeling study. In 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1-10). IEEE.
Lin, Y., Wei, T. W., Asheghi, M., Goodson, K. E.*, The Capillary-driven Two-phase Embedded Microchannel Heatsink for the Efficient Cooling of Power Electronic Modules, Bulletin of the American Physical Society, 2023
Wei, T. W., Lin, Z., Asheghi, M., & Goodson, K. E*., Micro-channel Cooling Technique to Minimize Thermal Deformation of the X-ray and High-power Laser Optics, International Conference on Synchrotron Radiation Instrumentation (SRI) 2022.
Wei, T. W.*, Hazra, S., Asheghi, M., & Goodson, K. E. Numerical Study of Large Footprint (24 X 24mm2) Silicon-Based Embedded Microchannel-3D Manifold Coolers. Journal of Electronic Packaging 2022. DOI: 10.1115/1.4055468[PDF]
Chen H, Wei, T. W., et al. Feasibility Design of Tight Integration of Low Inductance SiC Power Module with Microchannel Cooler[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2022: 962-965. DOI: 10.1109/APEC43599.2022.9773698[PDF]
Lyu, S. H., Wu, Q. Y., Wei, T. W.*, “Numerical Investigation of Impinging Surface Enhancement with Copper Inverse Opals (CIO) for Jet Cooling,” 2022 IEEE Symposium on Reliability for Electronics & Photonics Packaging (REPP), 2022. [PDF][Video]
Wei, T. W., Chen H., Lin Y., Hazra S., Chen Y., G. Prakash, N. Li, Y. Lu, H. A. Mantooth, Asheghi, M., Goodson K. E., “Demonstration and Experimental Characterization of DBC Active Laser-cut Microchannel Cooling with 3D Manifold,” 21th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2022.
Wei, T. W., Lin, Z., Asheghi, M., & Goodson, K. E*., “Micro-channel Cooling Technique to Minimize Thermal Deformation of the X-ray and High-power Laser Optics”, International Conference on Synchrotron Radiation Instrumentation (SRI) 2022.
H. Chen, Wei, T. W., Y. Chen, X. Li, N. Li, Q. Zhu, S. Hazra, Y. Zhao, M. P. Gupta, M. Asheghi, Y. Lu, K. Goodson, H. A. Mantooth, “Feasibility Design of Tight Integration of Low Inductance SiC Power Module with Microchannel Cooler” 2022 IEEE Applied Power Electronics Conference and Exposition. [PDF]
Wei, T. W., Zhang, L., Asheghi, M., Goodson, K. E.*, Embedded Micro-channel Cooling Technique to Minimize Thermal Deformation of X-ray and High-power Laser Optics, Journal of Physics: Conference Series, 2022, 2380 (1), 012071[PDF]
Chen, H., Wei, T. W., Li, X., Chen, Y., Lin, Y., Chinnaiyan, S., Asheghi, M., Mantooth, H. A., Demonstration of Wire bondless Silicon Carbide Power Module with Integrated LTCC Jet Impingement Cooler, 2022 IEEE Energy Conversion Congress and Exposition [PDF]
Hazra, S.*, Wei, T. W., Lin, Y., Asheghi, M, Goodson, K., Gupta M. P., Degner M., Parametric design analysis of a multi-level 3D manifolded microchannel cooler via reduced order numerical modeling, International Journal of Heat and Mass Transfer, 2022, 197, 123356. [PDF]
Wei, T. W.*, Oprins, H., et al., Heat Transfer and Friction Factor Correlations for Direct on-Chip Microscale jet impingement Cooling with Alternating Feeding and Draining Jets, Int. J. Heat Mass Transf, 2021, Volume 182, 121865. DOI: 10.1016/j.ijheatmasstransfer.2021.121865[PDF]
Wei, T. W.*, All-in-one design integrates microfluidic cooling into electronic chips, Nature, News and Views, 585, 188-189. (2020) (Invited) DOI: 10.1038/d41586-020-02503-1[PDF]
Wei, T. W.*, Oprins, H., et al., Experimental and Numerical Study of 3D Printed Direct Jet Impingement Cooling for High Power, Large Die Size Applications, in IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020. DOI: 10.1109/TCPMT.2020.3045113[PDF]
Wei, T. W.*, Oprins, H., Cherman, V., Beyne, E., & Baelmans, M. (2020). Experimental and numerical investigation of direct liquid jet impinging cooling using 3D printed manifolds on lidded and lidless packages for 2.5 D integrated systems. Applied Thermal Engineering, 2020, 164, 114535. DOI: 10.1016/j.applthermaleng.2019.114535[PDF]
Wei, T. W., Jung, K. W., Piazza, A., Hazra, S., Iyengar, M., Malone, C., Asheghi, M., & Goodson, K. E*. Parametric CFD Study of Large Footprint (24 x 24 mm2) Silicon-based Embedded Microchannel-3D Manifold Coolers. InterPACK 2020. (presentation only)
Wei, T. W.*, Oprins, H., Cherman, V., Yang, Z., Rivera, K., Van der Plas, G., Pawlak, B. J., England, L., Beyne, E., & Baelmans, M., “Demonstration of Package Level 3D-printed Direct Jet Impingement Cooling applied to High power, Large Die Applications”, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020, pp. 1422-1429. [PDF]
Wei, T. W.*, Oprins, H., Cherman, V., Van der Plas, G., De Wolf, I., Beyne, E., & Baelmans, M. (2019). Experimental characterization and model validation of liquid jet impingement cooling using a high spatial resolution and programmable thermal test chip. Applied thermal engineering, 152, 308-318. DOI: 10.1016/j.applthermaleng.2019.02.075[PDF]
Wei, T. W.*, Oprins, H., Cherman, V., Yang, S., De Wolf, I., Beyne, E., & Baelmans, M. (2019). Experimental Characterization of a Chip-Level 3-D Printed Microjet Liquid Impingement Cooler for High-Performance Systems. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(9), 1815-1824. DOI: 10.1109/TCPMT.2019.2905610[PDF]
Wei, T. W.*, Oprins, H., Cherman, V., De Wolf, I., Van der Plas, G., Beyne, E., & Baelmans, M. (2019, May). Thermal Analysis of Polymer 3D Printed Jet Impingement Coolers for High Performance 2.5 D Si Interposer Packages. In 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1243-1252). IEEE. [PDF]
Wei, T. W.*, Oprins, H., Cherman, V., Qian, J., De Wolf, I., Beyne, E., & Baelmans, M. (2018). High-Efficiency Polymer-Based Direct Multi-Jet Impingement Cooling Solution for High-Power Devices. IEEE Transactions on Power Electronics, 34(7), 6601-6612. DOI: 10.1109/TPEL.2018.2872904[PDF]
Oprins, H.*, Wei, T. W., et al., “A cold shower for chips [J]”, Chip Scale Review, Volume 22, Number 6, November, 2018: Page.26.