

Numerical Investigation of Impinging Surface Enhancement With Copper Inverse Opals (CIOs) For Jet Cooling

Shuhang Lyu¹, Qianying Wu², Tiwei Wei^{1,*}

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
 Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
 *Corresponding email: tiwei@purdue.edu

- **1.** Introduction
- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler
- **5.** Conclusions

Contents

1. Introduction

- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler
- **5.** Conclusions

Single-phase Jet cooling

Single-phase impingement jet cooling Adapted from Pappaterra, Imec

Why single-phase jet impingement?

- Very thin boundary layers
- Much higher htc than conventional forced convection ($\sim 6 \times 10^4 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ for single-phase water)
- Can be enhanced by surface modification

Pillar-like micro fins Ndao et al., IJHMT, 2012

(a) Finned copper foams (10 PPI) with the height of 60, 45, 30, 15 mm, respectively

(b) Finned copper foams (20 PPI) with the height of 60, 45, 30, 15 mm, respectively Finned copper foam heat sinks Wang et al., Applied Energy, 2019

Copper Inverse Opals (CIOs)

SEM image of CIO structures Zhang et al., Adv. Funct. Mater., 2018

5

Unit Cell Schematic (Face-Centered Cubic) Thermofluidic properties of CIOs Inverse opal structure:

- High surface area-to-volume ratio
- \Rightarrow Strong convective heat transfer
- High fluid permeability
- \Rightarrow Low pressure drop

Copper:

- High thermal conductivity
- \Rightarrow Good heat spreader

.

Contents

- **1.** Introduction
- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler
- **5.** Conclusions

REPP 2022

Simulation System

> Unit cell of jet cooler is investigated to reduce computational resource.

Characterization of CIOs in CFD

70×70×28 μm³ CIO layer

EE

Benchmark

> Thermofluidic characteristics of jet coolers with and without CIOs are benchmarked.

- **1.** Introduction
- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler

5. Conclusions

13

- ☐ Temperature uniformity is evaluated at different inlet velocities
- Jet coolers with CIOs show a much more uniform surface temperature.
- ✤ Good heat spreading in CIO structure

14

□ Effects of nozzle-to-CIO distance (*I*) are studied:

- > Impact of *I* is almost **negligible** for flat surfaces.
- > $T_{\rm s}$ in system with CIOs decreases with increasing *I*.

PURDUE UNIVERSITY

REPP 2022

Definition of Bypass Ratio

Effects of Bypass Ratio

Contents

- **1.** Introduction
- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler

5. Conclusions

FF

Heat Transfer Model

REPP 2022

Results

Flow characteristics at different inlet velocities and nozzle-to-CIO distances are well modeled.

Results

> Well capture Heat transfer characteristics at different inlet velocities and nozzle-to-CIO distances.

Contents

- **1.** Introduction
- 2. Methodology
- **3.** Thermofluidic Characteristics
- 4. Reduced-order Model for CIO Jet Cooler

5. Conclusions

Conclusions

We perform CFD simulations to explore the possibility of integrating CIOs in single-phase impingement jet cooling solutions.

- Utilization of CIOs in single-phase jet coolers enables a lower and more uniform temperature on the chip interface.
- However, large flow resistance in CIOs will increase the total pressure drop of jet cooler.
- Increasing the nozzle-to-CIO distance results in a stronger bypass flow and thus decreases the pressure drop and Nusselt number.
- A reduced-order model is proposed to describe the flow and heat transfer characteristics of jet coolers with CIOs, showing a good accuracy.

Thank you!

